Anisotropic classes of inhomogeneous pseudodifferential symbols

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic Classes of Inhomogeneous Pseudodifferential Symbols

We introduce a class of pseudodifferential operators in the anisotropic setting induced by an expansive dilation A which generalizes the classical isotropic class S γ,δ of inhomogeneous symbols. We extend a well-known L -boundedness result to the anisotropic class S δ,δ(A), 0 ≤ δ < 1. As a consequence, we deduce that operators with symbols in the anisotropic class S 1,0(A) are bounded on L p sp...

متن کامل

Anisotropic Classes of Homogeneous Pseudodifferential Symbols

We define homogeneous classes of x-dependent anisotropic symbols Ṡ γ,δ(A) in the framework determined by an expansive dilation A, thus extending the existing theory for diagonal dilations. We revisit anisotropic analogues of Hörmander-Mihlin multipliers introduced by Rivière [22] and provide direct proofs of their boundedness on Lebesgue and Hardy spaces by making use of the well-established Ca...

متن کامل

Born-jordan Pseudodifferential Operators with Symbols in the Shubin Classes

We apply Shubin’s theory of global symbol classes Γρ to the Born-Jordan pseudodifferential calculus we have previously developed. This approach has many conceptual advantages and makes the relationship between the conflicting Born-Jordan and Weyl quantization methods much more limpid. We give, in particular, precise asymptotic expansions of symbols allowing us to pass from Born-Jordan quantizat...

متن کامل

Pseudodifferential operators with homogeneous symbols

We prove boundedness of pseudodifferential operators with symbols satisfying the conditions |∂ ξ ∂ xa(x, ξ)| ≤ Cβ,γ |ξ|m−|β|+|γ| on homogeneous Besov-Lipschitz and Triebel-Lizorkin spaces

متن کامل

Pseudodifferential Operators with Rough Symbols

In this work, we develop L boundedness theory for pseudodifferential operators with rough (not even continuous in general) symbols in the x variable. Moreover, the B(L) operator norms are estimated explicitly in terms of scale invariant quantities involving the symbols. All the estimates are shown to be sharp with respect to the required smoothness in the ξ variable. As a corollary, we obtain L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Collectanea Mathematica

سال: 2011

ISSN: 0010-0757,2038-4815

DOI: 10.1007/s13348-011-0056-6